

No. UG/ 03 of 2019-20

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to the syllabus uploaded Academic Authority Unit which was accepted by the Academic Council at its meeting held on 27th February, 2013 vide item No.4.10 relating to the revised syllabus as per the (CBSGS) for the T.Y.B.Sc. (Applied Component) B.Sc. Course - Biotechnology (USACBT).

They are hereby informed that the recommendations made by the Board of Studies in Microbiology at its meeting held on 22nd May, 2019 have been accepted by the Academic Council at its meeting held on 26th July, 2019 vide item No.4.10 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T.Y.B.Sc. (Sem. -V & VI) Biotechnology (Applied Component) in the subject of Microbiology has been brought into force with effect from the academic year 2019-20, accordingly. (The same is available on the University's website

MUMBAI - 400 032 11th September, 2019

(Dr. Ajay Deshmukh) REGISTRAR

To

The Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C/4.10/26/07/2019

No. UG/ 103 -A of 2019-20

***** MUMBAI-400 032

September, 2019

Copy forwarded with Compliments for information to:-

1) The I/c Dean, Faculty of Science & Technology,

2) The Chairman, Board of Studies in Microbiology,

3) The Director, Board of Examinations and Evaluation,

4) The Provesor-cum-Director, Institute of Distance and Open Learning (IDOL), 5) The Director, Board of Students Development,

6) The Co-ordinator, University Computerization Centre,

(Dr. Ajay Deshmukh) REGISTRAR

lome

Cover Page

AC_26/7/19 Item No. 4.10

UNIVERSITY OF MUMBAI

Syllabus for Approval

Sr. No.	Heading	Particulars
1	Title of the Course	TYBSC Applied Component for Microb BIOTECHNOLOGY
2	Eligibility for Admission	XIII (Sc) Second Year BSC
3	Passing Marks	40 100
4	Ordinances / Regulations (if any)	Ord : 0.2145 Gr No. UG 394 of 3004 dt Sept 2004
5	No. of Years / Semesters	2 Semesters
6	Level	P.G. / U.G./ Diploma / Certificate (Strike out which is not applicable)
7	Pattern	Yearly / Semester (Strike out which is not applicable)
8	Status	_New / Revised (Strike out which is not applicable)
9	To be implemented from Academic Year	From Academic Year 2019-20

Date: Signature: Shalhers Name of BOS Chairperson / Dean : Peof (Dx) Z. P. Bhathers

ent

UNIVERSITY OF MUMBAI

Revised Syllabus for T.Y.B.Sc. SEM V and SEM VI

(APPLIED COMPONENT) Program: B.Sc.(Microbiology) Course: BIOTECHNOLOGY (USACBT)

Choice Based Credit System with effect from the academic year 2019–2020

T. Y. B. Sc. Choice Based credit system Biotechnology (Applied Component) Syllabus for B.Sc degree in Microbiology (To be implemented from the academic year 2019-2020) Semester V

Introduction to Biotechnology					
		Semester V			
Course code	Unit	Торіс	Credits	Lectures/	
				Week	
USACBT501	Ι	Basic Techniques in biotechnology	2	4	
	II	Bioremediation in Biotechnology			
	III	Animal Biotechnology			
	IV	Industrial and Marine			
		Biotechnology			
USACBT5P1		Practical Based on USACBT501	2	4	

SEMESTER VI

Applied Biotechnology					
		Semester VI			
Course code	Unit	Торіс	Credits	Lectures/	
				Week	
USACBT601	Ι	Role of Biotechnology in Society	2	4	
	II	Bioenergy and Biofuels			
	III	Plant Biotechnology			
	IV	Healthcare Biotechnology			
USACBT6P1		Practical based on USACBT601	2	4	

N.B.

I. Each theory period shall be of 48 minutes duration. Theory component shall have 60 instructional periods plus 60 notional periods per semester which is equal to 96 learning hours. For theory component the value of one credit is equal to 48 learning hours.

II. Each practical period shall be of 48 minutes duration. Practical component shall have 60 instructional periods plus 15 notional periods per semester which is equal to 60 learning hours. For Practical component the value of one credit is equal to 30 learning hours.

LEARNING OBJECTIVES:

Topics included in this semester aim:

- > To revise and impart to the students, knowledge of the basic techniques of biotechnology with respect to gene cloning and cloning vectors.
- To give the students an overview of bioremediation of soil, water and the different methods of using genetically engineered microbes and plants.
- To provide a basic insight into the methods of generating transgenic animals and study their applications.
- > To give an insight into the role of microorganisms in industrial and marine biotechnology.

Learning outcome:

- Students will become competent by gaining knowledge of bioremediation, industrial production and animal biotechnology which will enhance their chances for employment and for further education.
- The students will acquire knowledge to carry out techniques in biotechnology and will understand the applications of transgenic animals and the methods used for obtaining transgenic animals.

	Introduction to Biotechnology Course code : USACBT501			
	Semester V			
Unit	Торіс	Lec/ topic	Lecture/ Sem	Credit
Ι	 Basic Techniques in Biotechnology 1.1. Cutting and joining of DNA, Exonucleases, Endonucleases, Restriction Endonucleases (Nomenclature, examples and quality), DNA ligases, Alkaline Phosphatases, DNA polymerases, Use of Linkers and Adaptors 1.2. Cloning Vectors : Properties of good vector, Expression vectors. E. coli vectors – Plasmid, Cosmid, Bacteriophage vectors, Shuttle vectors, Yeast vectors, Vectors for animals and plants. 1.3. Gene cloning. Steps in Gene cloning, Introduction of vector in to suitable bacterial host (by transformation and selection), Screening by immunological assays 	07 06 02	15L	02
Π	Bioremediation in Biotechnology :2.1 Introduction and Types of reaction in Bioremediation.2.2 Biodegradation of pesticides and herbicide2.3Bioremediation of contaminated soil and waste water.2.4Bioremediation using genetically engineered microbes(GEM)2.5Higher plants in Bioremediation : Phytoremediation2.6Transgenic plants for phytoremediation2.7 Bioremediation market.	02 03 02 02 02 02 02 02 02	15L	
Ш	 Animal Biotechnology : 3.1 Transgenic Mice : Methodology: The retroviral Vector method, The DNA microinjection method, The engineering embryonic stem cell method, Genetic modification with the Cre-lox P recombination system , RNA interference, , Transgenesis with high capacity vectors. 3.2 Transgenic mice applications: Transgenic disease models: Alzheimer disease, Using Transgenic mice as test systems, Conditional regulation of transgene expression, Conditional control of cell death. 	07 07 08	15L	

IV	Industrial and Marine Biotechnology:		15L	
	4.1 Industrial Biotechnology:	07L		
	Synthesis of Novel Antibiotics – Engineering polykatid			
	antibiotics, peptide antibiotics			
	Production of SCP – Yeast, Spirulina, Mushroom			
	Production of Biopolymers – Biogums, Biopolysaccharides,			
	Bioplastic.			
	4.2 Marine Biotechnology:	08L		
	Bio-prospecting, Marine Microbial Habitats and Their			
	Biotechnologically relevant Microorganisms			
	Methods for Microbial Bio-prospecting in Marine Environments.			
	Biotechnological Potential of Marine Microbes			
	Bioactive compounds from other Marine Organisms: fungi,			
	Microalgae, Seaweeds, Actinomycetes, sponges			
	Marine Bio-resources, Marine Secondary Metabolites, Marine			
	Proteins, Marine Lipids, Cosmetics from Marine Sources, Marine			
	Drugs, Marine Microbial Enzymes, Marine Drugs as			
	Pharmaceuticals.			

References:

- Elements of Biotechnology: 2009 PK Gupta, Rastogi Publications Edition 2nd ,
- Bernard R Glick and Jack J Pasternak. Molecular Biotechnology: Principles and Applications of recombinant DNA. 4th Edition.
- Primrose and others. Principles of Gene manipulations. 7th edition. 2004 Blackwell Science.
- Peter J. Russell 2006, "Genetics-A molecular approach", 3rd edition.
- R. C. Bubey. A Texy book of Biotechnology. 2006 S. Chand and Company Ltd.
- B. D. Singh. Biotechnology. Kalyani Publishers.
- Prescott and Dunn's ''Industrial Microbiology''1982 4th Edition, McMillan Publishers
- Marine biotechnology in the twenty-first century-Problems, promise, and products, National academy press •

PRACTICALS BASED ON USACBT501

- 1. Restriction digestion of DNA and study of restriction gene map.
- 2. Gel electrophoresis of DNA
- 3. Isolation of genomic DNA (bacterial / yeast or onion)
- 4. Enrichment and isolation of Sulphate reducing bacteria
- 5. Isolation and identification of *Bacillus thuringenesis*
- 6. Determination of COD and BOD of sewage sample /Industrial Effluent
- 7. Production of Biopesticide
- 8. Production of Microbial polysaccharide and determination of yield.
- 9. Cultivation of Edible mushroom
- 10. Isolation of marine microbial flora

SEMESTER VI

LEARNING OBJECTIVES:

- > Aims at imparting knowledge on recent trends in plant and healthcare biotechnology.
- > Aims at highlighting the significance of bioenergy and biofuel
- > Create awareness of the importance of Biotechnology in society

LEARNING OUTCOME:

- Students will be trained to address issues of Bioenergy and Bio fuels
- They will be skilled to respond to issues related to genetic engineering in plant biotechnology.
- The learner will be able to comprehend details of the role of biotechnology in society

	Applied Biotechnology Course code : USACBT601			
-	Semester VI			
Unit	Торіс	Lec/ topic	Lecture /sem	Credit
Ι	Role of Biotechnology in Society	15	15L	02
	1.1Benefits of Biotechnology.			
	1.2 ELSI of Biotechnology			
	1.3Recombinant therapeutic product for human			
	healthcare			
	1.4Genetic modification and food consumption			
	1.5Recombinant food and religious beliefs			
	1.6 Are Genetically Modified Food is safe?			
	1.7Release of genetically engineered organisms			
	1.8Application of Human genetic r-DNA research			
	1.9Human embryonic stem cell research			
	1.10Organ cloning			
	1.11Biotechnology and the developing countries			
	1.12 Patenting Biotechnology Invention			_
II	Bioenergy and Biofuel		15L	
	2.1Bioenergy	07L		
	Energy consumption world wide			
	Energy consumption in India			
	Solid biomass resources and dedicated energy crops			
	Greenhouse gases and Kyoto protocol			
	Bioenergy for Sustainable Development	071		
	2.2Biofuel	07L		
	Liquid biofuels: Bio-diesel, Bio-ethanol, Bio-oils			
	Gaseous Biofuels: Biogas, Bio hydrogen			
	Fossil fuels: The nonrenewable sources of energy			
	Renewable and C-Neutral bioenergy			

	Biomass production and its utilization for bioenergy			
	2.3 Benefits and problems	01L		
	- in production and use of biofuels			
III	Plant Biotechnology		15L	
	3.1 Genetic engineering of Plants	06L		
	Plant transformation with Ti plasmids of A.tumefaciens,			
	Ti plasmid derived vector systems, physical methods of			
	transferring genes to plants.			
	3.2Uses of genetically engineered plants:	09L		
	To overcome Biotic and abiotic stress: Insect resistance:			
	Increasing expression of the <i>B.thuringiensis</i> protoxin,			
	other strategies for protecting plants against insects,			
	preventing the development of Bacillus thuringeinsis			
	resistant insects, Herbicide resistant plants Oxidative			
	stress, Salt and drought stress, Modification of plant			
	nutritional content: Vitamin A			
IV	Healthcare Biotechnology		15L	
	4.1Branches within healthcare biotechnology	03		
	4.2 Animal and human health care	04		
	4.3Genetic Counseling	04		
	4.3Forensic medicine	04		

References:

- Bernard R Glick and Jack J Pasternak. Molecular Biotechnology: Principles and Applications of recombinant DNA. 4th Edition.
- Bioenergy and biofuels: Ozcan Konur, CRC Press, Edition 1st 2018
- Elements of Biotechnology, 2009 P K Gupta, Second Revised Edition, Rastogi Publications.
- Vault Career guide to Biotechnology (E-Book)
- Biotechnology 2004 U.Satyanarayana ,Books and Allied (P) Ltd.

PRACTICALS BASED ON USACBT 601

- 1. Test for reducing sugars.
- 2. Bioethanol production from biomass.
- 3. Isolation of Cellulase producing microorganisms and determination of Cellulase activity
- 4. Plant tissue culture Callus formation.
- 5. Immobilization of Sacchromyces cerevisiae using alginate and invertase assay
- 6. Visit to PTC and ATC Facility
- 7. Case Studies

####